The effects of fastening strength on the variation in stress-free temperature in continuous welded rail

Author:

Gräbe Petrus J1,Jacobs Dylan12

Affiliation:

1. Department of Civil Engineering, University of Pretoria, South Africa

2. Transnet Freight Rail, South Africa

Abstract

Continuous welded rail (CWR) is a fundamental component of any modern track structure and has several advantages over former types of rail joining processes. The reduction in maintenance and related costs has become the most attractive property of CWR although careful monitoring and maintenance of CWR is essential to ensure safe train operations. Management of the stress-free temperature (SFT) of any section of CWR in order to prevent rail breaks and lateral buckling that could lead to derailments is a vital duty of the track maintenance team. Variations in the SFT are influenced by a number of external factors. This paper describes experimental field and laboratory tests carried out to investigate to what extent the fastening strength influences the variation in SFT in CWR track on Fist fastenings and two types of pads. The research established a nonlinear relationship between clamping force and rail movement through the fasteners as well as a strongly linear relationship between clamping force and the variation in SFT. It is also demonstrated that although the friction coefficient of the pad has an influence on rail movement through the fastener, the primary factor influencing SFT variations is the clip force. This paper concludes by quantifying the relationship between clamping force and the expected variation in SFT with clear guidelines on the management of the SFT in CWR.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3