Optimisation of wheelset maintenance by using a reduced flange wear wheel profile

Author:

Muhamedsalih Yousif1ORCID,Tucker Gareth1,Stow Julian1ORCID

Affiliation:

1. Institute of Railway Research, University of Huddersfield, Huddersfield, UK

Abstract

This paper investigates whether it is possible to develop a wheel profile design that will extend wheelset life compared to an existing commonly used Great Britain passenger wheel profile, the P8. The P8 wheel profile was originally developed in the late 1960s as an alternative to a 1:20 coned wheel profile (the P1). The P1 often required frequent turning as the conicity could increase quickly over time as the wheel wore in service. The P8 was designed based on an average worn shape of a P1 wheel. The P8 was found to stay closer to its original shape as it wore in service. However, new P8 wheels or newly profiled P8 wheels tend to experience a high initial flange wear rate in the first 20,000–30,000 miles, until the worn wheel shape reaches ‘dimensional stability’; after this, the flange width typically remains relatively constant. A ‘Reduced Flange Wear’ (RFW) wheel profile has been developed, based on the P8 profile but with a modified flange root geometry. The Wheel Profile Damage Model has been used to calculate how the proposed RFW wheel profile could reduce wear rates and therefore increase wheelset life. This paper presents results for a typical electric multiple unit train (EMU1) running on rural and suburban routes and a higher speed variant (EMU2) running on an inter-city route. The effect of the proposed RFW profile on rail rolling contact fatigue (RCF) has also been evaluated using the Whole Life Rail Model, for the same routes. The results suggest that the proposed RFW profile does reduce flange wear compared to a P8, with larger reductions achieved on routes that are more curvaceous. For wheel turning based purely on restoring wheel profile geometry, the RFW profile could half the amount of material removed at each turning (based on turning wheels at 250,000 miles). Furthermore, the results show that the RFW profile experiences slightly less wheel RCF damage than the P8. When new, the RFW profile appears to cause slightly higher rail RCF than a new P8 (For radii 700 m < R < 1300 m); however, the results suggest that worn RFW profiles cause very similar rail RCF to that caused by worn P8 wheels.

Funder

Rail Safety and Standards Board

Publisher

SAGE Publications

Subject

Mechanical Engineering

Reference31 articles.

1. Use of railway wheel wear and damage prediction tools to improve maintenance efficiency through the use of economic tyre turning

2. RSSB. Railway group standard GM/RT2466 issue 3: railway wheelsets. Huddersfield, UK: University of Huddersfield, 2010.

3. Molyneux-Berry P, Bevan A. The influence of route characteristics, train design and maintenance policy on wheel tread damage, wheel life and costs for multiple-unit trains. In: 17th International Wheelset Congress, Kiev, Ukraine, 22–27 September 2013.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3