Nonlinear Analysis of RC Structures Using Isotropic Damage Model

Author:

Gopinath Smitha1,Rajasankar J.1,Iyer N. R.1

Affiliation:

1. CSIR-Structural Engineering Research Centre, CSIR Campus, Taramani, Chennai 600113, India

Abstract

This article proposes a simple isotropic damage model within damage mechanics framework to represent the behavior of concrete in tension. Macroscopic evolution of tensile crack is considered as damage and is mathematically defined using an exponential function of tensile strain. A damage evolution law is formulated by applying strain equivalence principle to hyperbolic tension-softening curve. Value of damage variable is assumed theoretically to vary between ‘0’ and ‘1’ to denote uncracked and ruptured states, respectively. A smeared rotating crack model is coupled with damage formulation to simulate crack propagation effects in nonlinear finite element analysis of reinforced concrete (RC) structures. Many deficiencies of smeared crack model such as stress locking, mesh-induced directional bias, and instability in response computation for near-ultimate load are overcome using the coupled model. To verify the proposed model, nonlinear static response behavior of a RC beam is computed and compared with experimental and analytical results reported in literature. Effectiveness and applicability of the model to analyze practical structures are proved by analyzing a RC chimney. Nonlinear response of RC chimney is reviewed at global level while damage states of finite elements are studied at local level.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3