Gradient-enhanced Coupled Plasticity-anisotropic Damage Model for Concrete Fracture: Computational Aspects and Applications

Author:

Abu Al-Rub Rashid K.1,Voyiadjis George Z.2

Affiliation:

1. Zachry Department of Civil Engineering, Texas A&M University College Station, TX 77843, USA,

2. Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA

Abstract

It is widely studied that classical continuum damage theory for concrete fracture exhibits an extreme sensitivity to the spatial discretization in the finite element simulations. This sensitivity is caused by the fact that the mathematical description becomes ill-posed at a certain level of accumulated damage. A well-posed problem can be recovered by using a gradient-enhanced damage model in which a material length scale is introduced as a localization limiter. In this work, a nonlocal gradient-enhanced fully coupled plastic-damage constitutive model for plain concrete is developed. Anisotropic damage with a plasticity yield criterion and a damage criterion are introduced to be able to adequately describe the plastic and damage behavior of concrete. In order to account for different effects under tensile and compressive loadings, nonlocal damage variables that account for the progressive degradation of mechanical properties under stress states of prevailing tension and compression and two internal length scales, one for tension and the other for compression, are introduced as localization limiters. Therefore, two nonlocal damage criteria are used: one for compression and a second for tension such that the total stress is decomposed into tensile and compressive components. In order to solve the time step problem, a decoupled elastic predictor and plastic corrector steps are performed first in the effective configuration where damage is absent, and then a nonlocal damage corrector step is applied in order to update the final stress state. The algorithmic treatment of both tension and compression is presented in a unified way. A simple procedure to calculate the gradient of the tensile/compressive damage variables is described which can be used directly without the need of intensive numerical modifications of an existing finite element code. The effectiveness of the proposed local model has been demonstrated in both uniaxial and biaxial tension and compression problems and compared with experimental data. Numerical results obtained with the proposed nonlocal model are compared with experimental results concerning bending of three-point notched and four-point notched concrete beams. As the mesh is refined, convergence of numerical results is observed both in terms of damage patterns and of the global response.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A probabilistic virtual process chain to quantify process-induced uncertainties in Sheet Molding Compounds;Composites Part B: Engineering;2023-01

2. Evolution of damage and healing;Scalar Damage and Healing Mechanics;2023

3. Damage and healing mechanics;Scalar Damage and Healing Mechanics;2023

4. Non-local continuum damage model for poro-viscoelastic porous media;International Journal of Rock Mechanics and Mining Sciences;2022-11

5. An anisotropic localizing gradient damage approach for failure analysis of fiber reinforced composites;Composite Structures;2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3