Affiliation:
1. Aerospace Engineering Department, Sharif University of Technology, Tehran, Iran
Abstract
Conic shell structures are widely used in aerospace industries. In the literature various models have been proposed to failure analysis of composite materials. Clearly, each model has a favorable range of applications. In this paper tensile, compressive, shear and thermal expansion properties of tape-wounded Carbon/Phenolic composites are firstly measured at various temperatures in range 23–200°C. The captured properties are then taken into account to progressive failure analysis of a conic Carbon/Phenolic structure under internal pressure and thermal loadings. For this end, a particular failure criterion is proposed to predict failure in the composite structures with a reasonable margin of safety. The enhanced model is then implemented into the commercial finite element software of ABAQUS via a developed user material (UMAT) subroutine utilizing a suitable solution algorithm. Advantages of the model are assessed and comparisons with other failure criteria as well as experiment are presented.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献