Dynamic failure behavior and damage evolution process of holed sandstone under impact loads

Author:

Tao Ming1,Zhao Huatao1ORCID,Momeni Aliakbar2ORCID,Cao Wenzhuo3ORCID,Zhao Yan1ORCID

Affiliation:

1. School of Resources and Safety Engineering, Central South University, Hunan, China

2. Faculty of Earth Sciences, Shahrood University of Technology, Shahrood, Iran

3. Department of Earth Science and Engineering, Imperial College, London, UK

Abstract

In this research, the damage process and dynamic failure behavior of some sandstone rocks, containing an elliptical hole, were evaluated. For this reason, a series of laboratory tests under both static and dynamic loads in 4 different orientations of the elliptical hole was performed. Modified Split Hopkinson Pressure Bar testing machine was employed to apply impact load. Dynamic fracture evolution was recorded by utilizing a high-speed camera to evaluate the macro damage evolution process. Scanning electron microscope analysis and thin section studies were also used to assess mineral's behavior regarding micro-crack evolution. Furthermore, the experimental tests were numerically simulated, and strain energy density and dynamic stress concentration factor were measured to evaluate the effect of elliptical hole inclination on dynamic response. The results indicated that when the largest diameter is perpendicular to core axis, the rock shows the lowest strength in both static and dynamic loading conditions. Also, with increasing hole inclination, both strain energy density and dynamic stress concentration factor decreased. Evaluation of fracture surface indicated that grain-boundary cracks are the dominant type of cracks and iron oxide cement distribution has a vital role in the development of the cracks.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3