Dynamic constitutive model of saturated saline frozen soil under uniaxial impact loading

Author:

Shang Bin1,Zhu Zhiwu12ORCID,Li Bin1,Zhang Fulai1,Li Tao1

Affiliation:

1. Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, China

2. Northwest Institute of Eco-Environment and Resources, State Key Laboratory of Frozen Soil Engineering, Chinese Academy of Sciences, Lanzhou, China

Abstract

The soil matrix, salt crystals, ice crystals, and pore solutions constitute the composite geological material of saturated saline frozen soil. The destruction mode and dynamic constitutive model of saturated saline frozen soil need to be studied because infrastructure construction is increasingly being extended to regions with saturated saline frozen soil. Based on the split Hopkinson pressure bar device, uniaxial impact compression tests were conducted on frozen soil samples with different salt contents under different strain rates. The strain rate of saturated saline frozen soil must be emphasized based on the results. The gradient of the elastic segment and maximum stress of the soil are negatively correlated with the salt content increase. To further explore the failure mechanism, the study examined the damage and failure behavior of saturated saline frozen soil, along with the absorption energy in the failure process. According to the test results, the saturated saline frozen soil was similar to a particle-reinforced composite. Subsequently, the debonding damage of the ice–salt eutectic and the mechanical–chemical damage of the soil matrix were considered. The test results could be predicted accurately from the results of the model, verifying that the influences of the salt content and strain rate are reasonably considered by the constructed model.

Funder

National Natural Science Foundation of China

Opening Foundation of the State Key Laboratory of Frozen Soil Engineering

Natural Science Foundation of Sichuan Province

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3