Evaluation of gigacycle fatigue limit and life of high-strength steel with interior inclusion-induced failure

Author:

Li Wei1,Wang Ping2,Lu Lian-Tao3,Sakai Tatsuo4

Affiliation:

1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China

2. Institute of Oceanographic Instrumentation, Shandong Academy of Sciences, Qingdao, China

3. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, China

4. Research Center of Advanced Materials Technology, Ritsumeikan University, Kusatsu, Japan

Abstract

The gigacycle fatigue properties with the interior inclusion-induced failure for three kinds of high-strength steels are investigated in this study. Fatigue strength of these steels in the gigacycle regime is highly related to the sizes of inclusions that are present in the effective damage zone under loading condition. The induced stress concentration at the inclusion–matrix interface plays a key role in the small crack growth process within fine granular area, but has little effect on the macroscopic crack growth outside the fine granular area. Considering the effect of stress gradient around the inclusion, new models were developed to evaluate the values of stress intensity factor at the front of the fine granular area and the fish-eye. A nearly constant stress intensity factor value of 4.5[Formula: see text] for the fine granular area can be regarded as the threshold value controlling interior macroscopic crack growth. A method from the viewpoint of small crack growth was proposed to evaluate the fatigue limit/life of high-strength steel with the interior inclusion-induced failure in the gigacycle regime, which reveals the influences of loading condition, inclusion size, and specimen size. In life prediction, this method is mainly based on the relationship between the fine granular area size and the fatigue life. Because of the maximum inclusion sizes used, the partially predicted results may be somewhat conservative, but they are more satisfied with the requirement of safety design.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3