Fatigue life prediction of the nitrided steel by multiaxial high cycle fatigue criteria

Author:

Bechouel Rafik,Ghanem Abdelkarim,Terres Mohamed Ali

Abstract

The present study aims to predict the fatigue strength of ion-nitrided 42CrMo4 steel, using multiaxial high cycle fatigue (HCF) criteria and considering the effects of stabilized residual stresses and surface hardening. The predicted fatigue strength was compared to experimental data obtained after three-points bending fatigue tests at two stress ratios (0.1 and 0.5) and for notched (Kt = 1.6) nitrided and untreated specimens. A 3D finite element (FE) model of a three-point bending fatigue test was developed under ABAQUS software in order to determine the actual applied cyclic stress state at the notch. The results show that ion-nitriding treatment led to 32% improvement in the fatigue strength at 106 cycles compared to the untreated material. This improvement is explained by the advantageous effect of ion-nitriding treatment in terms of compressive residual stresses and surface layer hardening. Both stabilized residual stress state and hardening effects were successfully implemented into various multi-axial HCF criteria, including Sines, Crossland, Dang Van and Matake criteria. A sensitivity analysis has shown that Crossland criterion has permitted to predict the fatigue limits in accordance with the experimental results.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3