Toughness enhancement in architecturally modified Al6061-5 vol.% SiCp laminated composites

Author:

Monazzah A Hosseini1,Bagheri R1,Reihani SM Seyed1,Pouraliakbar H2

Affiliation:

1. Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran

2. Department of Advanced Materials, WorldTech Scientific Research Center (WT-SRC), Tehran, Iran

Abstract

Damage tolerance improvement in discontinuously reinforced aluminum matrix composites has been examined through both extrinsic and intrinsic approaches by researchers. In this study, extrinsic mechanism was considered in the form of architectural modification in laminates comprising two exterior layers of Al6061-5 vol.% SiCp and an interlayer of Al1050. Hot roll bonding was utilized to fabricate laminates since interfacial adhesion of layers was controlled by means of rolling strain. The interfacial strength and fracture resistance of specimens were examined by shear and three-point bending test, respectively. Achievements demonstrated that the quasi-static toughness of laminates tested in crack divider orientation was greater than that of monolithic samples. Also, it was revealed that the initiation, propagation, and total toughness were influenced by interfacial adhesion. In the other words, interfacial bonding played a major role in energy absorption during fracture. Enhancement of the interfacial adhesion by an increment in rolling strain elevated the energy consumed for emergence and growth of debonded area.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3