Modeling the relationship between urban tree canopy, landscape heterogeneity, and land surface temperature: A machine learning approach

Author:

Wilson Bev1,Kashem Shakil Bin2,Slonim Lily1

Affiliation:

1. University of Virginia, USA

2. Kansas State University, USA

Abstract

Cities across the United States and around the globe are embracing urban greening as a strategy for mitigating the effects of rising temperatures on human health and quality-of-life. Better understanding how the spatial configuration of tree canopy influences land surface temperature should help to increase the positive impacts of urban greening. This study applies a machine learning approach for modeling the relationship between urban tree canopy, landscape heterogeneity, and land surface temperature (LST) using data from nine cities located in nine different climate zones of the United States. We collected summer LST data from the U.S. Geological Survey (USGS) Analysis Ready Data series and processed them to derive mean, minimum, and maximum LST in degrees Fahrenheit for each Census block group within the cities considered. We also calculated the percentage of each block group comprised by the land cover designations in the 2016 or 2019 National Land Cover Database (NLCD) maintained by the USGS, depending on the vintage of the available LST data. High resolution tree canopy data were purchased for all the study cities and the spatial configuration of tree canopy was measured at the block group level using established landscape metrics. Landscape metrics of the waterbodies were also calculated to incorporate the cooling effects of waterbodies. We used a Generalized Boosted Regression Model (GBM) algorithm to predict LST from the collected data. Our results show that tree canopy exerts a consistent and significant influence on predicted land surface temperatures across all study cities, but that the configuration of tree canopy and water patches matters more in some locations than in others. The findings underscore the importance of considering the local climate and existing landscape features when planning for urban greening.

Publisher

SAGE Publications

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Urban Studies,Geography, Planning and Development,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3