Spatial configuration and time of day impact the magnitude of urban tree canopy cooling

Author:

Alonzo MichaelORCID,Baker Matthew EORCID,Gao Yuemeng,Shandas Vivek

Abstract

Abstract Tree cover is generally associated with cooler air temperatures in urban environments but the roles of canopy configuration, spatial context, and time of day are not well understood. The ability to examine spatiotemporal relationships between trees and urban climate has been hindered by lack of appropriate air temperature data and, perhaps, by overreliance on a single ‘tree canopy’ class, obscuring the mechanisms by which canopy cools. Here, we use >70 000 air temperature measurements collected by car throughout Washington, DC, USA in predawn (pd), afternoon (aft), and evening (eve) campaigns on a hot summer day. We subdivided tree canopy into ‘soft’ (over unpaved surfaces) and ‘hard’ (over paved surfaces) canopy classes and further partitioned soft canopy into distributed (narrow edges) and clumped patches (edges with interior cores). At each level of subdivision, we predicted air temperature anomalies using generalized additive models for each time of day. We found that the all-inclusive ‘tree canopy’ class cooled linearly at every time (pd = 0.5 °C ± 0.3 °C, aft = 1.8 °C ± 0.6 °C, eve = 1.7 °C ± 0.4 °C), but could be explained in the afternoon by aggregate effects of predominant hard and soft canopy cooling at low and high canopy cover, respectively. Soft canopy cooled nonlinearly in the afternoon with minimal effect until ∼40% cover but strongly (and linearly) across all cover fractions in the evening (pd = 0.7 °C ± 1.1 °C, aft = 2.0 °C ± 0.7 °C, eve = 2.9 °C ± 0.6 °C). Patches cooled at all times of day despite uneven allocation throughout the city, whereas more distributed canopy cooled in predawn and evening due to increased shading. This later finding is important for urban heat island mitigation planning since it is easier to find planting spaces for distributed trees rather than forest patches.

Funder

Directorate for Social, Behavioral and Economic Sciences

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3