Mapping China’s regional economic activity by integrating points-of-interest and remote sensing data with random forest

Author:

Chen Qian1,Ye Tingting11,Zhao Naizhuo21,Ding Mingjun31,Ouyang Zutao41,Jia Peng51,Yue Wenze61,Yang Xuchao1ORCID

Affiliation:

1. Ocean College, Zhejiang University, China

2. McGill University, Canada

3. Jiangxi Normal University, China

4. Stanford University, USA

5. University of Twente, the Netherlands; International Initiative on Spatial Lifecourse Epidemiology (ISLE), the Netherlands

6. Zhejiang University, China

Abstract

Nighttime light imageries are widely used for mapping the gross domestic product (GDP) over large areas. However, nighttime light imagery is inappropriate to disaggregate agricultural GDP and inadequate to differentiate the GDP from the secondary and tertiary sectors. Points-of-interest, a kind of geospatial big data with geographic locations and textual descriptions of the category, can effectively distinguish industrial and commercial areas, and therefore have the potential to improve the precise GDP mapping from secondary and tertiary sectors. In this study, a machine learning method, random forest, was used to disaggregate the 2010 county-level census GDP data of mainland China to 1 km × 1 km grids. Six Random Forest models were constructed for different economic sectors to explore the non-linear relationships between various geographic predictors and GDP from different sectors. By fusing points-of-interest of varying categories, the spatial distribution of economic activities from the secondary and tertiary sectors was effectively distinguished. Compared to previous studies, the strategy of developing specific Random Forest models for different sectors generated a more reasonable distribution of GDP. Our results highlight the feasibility of using point-of-interest data in disaggregating non-agricultural GDP by exploiting the complementary features of the different data sources.

Funder

the Second Tibetan Plateau Scientific Expedition and Research program

the Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Urban Studies,Geography, Planning and Development,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3