The effect of nanoparticles shape on the mechanical properties of poly lactic acid matrix

Author:

Daneshpayeh Sajjad1,Ghasemi Faramarz Ashenai1ORCID,Ghasemi Ismail2

Affiliation:

1. Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

2. Department of polymer Engineering, Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran

Abstract

In this research, mechanical properties of poly lactic acid (PLA)-based nanocomposites were investigated. The nanocomposites were fabricated by adding of three types of nano-materials including multi-walled carbon nanotubes (MWCNT), carbon black (CB) nanoparticles and graphene nano-platelets (GnPs) in four levels from 0 to 3 wt.% to PLA matrix by an internal mixer. Tensile and impact tests were performed to obtain the mechanical properties of nanocomposites. Moreover, field-emission scanning electron microscopy (FESEM) was used to observe the state of nano-fillers dispersion. The FESEM images showed that CB nanoparticles and MWCNT are well distributed in the matrix, but that GnPs are agglomerated. The results of the tensile tests showed that the addition of MWCNT and CB nanoparticles increased the tensile strength by 36% and 76% and the elastic modulus by 10% and 68%, respectively. Also, the presence of all three types of carbon fillers at low loading increased the elongation at break of PLA matrix, and this increase was more significant for GnPs by 55% in the 1 wt.% loading. Finally, the PLA polymer become more brittle with the addition of nanotubes and nano-platelets, and its impact strength was reduced. While, the CB nanoparticles increased the absorbing energy and impact strength.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3