Affiliation:
1. Department of Solids Design, Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran
2. School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
Abstract
The goal of this work is to investigate the mechanical and fracture characteristics of polylactic acid (PLA)/thermoplastic polyurethane (TPU)/halloysite (HNT). HNT with three levels (0, 3, and 6 wt.%) and TPU with three levels (10, 20, and 30 wt.%) were used as variables. The investigation of tensile properties revealed contrasting effects of TPU and HNT levels. Increasing TPU content to 30 wt.% led to a decrease in strength and modulus by 36% and 42% in turn, however resulted in a remarkable 338% improvement in elongation at break. Conversely, the addition of 3 wt.% HNT enhanced both tensile strength and modulus, although it caused a reduction in elongation at break. The results concerning fracture properties showed by incorporating TPU up to 30 wt.% EWF ( w e) and non-EWF ( βw p) rose by 459% and 178%, respectively. Additionally, the inclusion of 3 wt.% HNT further elevated the EWF compared to the compound containing 10 wt.% TPU without HNT. Through optimization, the compound with 10 wt.% TPU and 3 wt.% HNT was shown to have the optimum strength, stiffness, and toughness balance.
Funder
Shahid Rajaee Teacher Training University