Fatigue life prediction and fracture mechanism of styrene-butadiene-styrene thermoplastic elastomer under uniaxial tension

Author:

Liu Yuxin1ORCID,Wu Rulong1,Liao Liangyan1

Affiliation:

1. Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, People’s Republic of China

Abstract

The fatigue life and prediction of styrene-butadiene-styrene thermoplastic elastomer (SBS) under the action of uniaxial tension was investigated, and the fatigue fracture mechanism was analyzed. With the increases of amplitude and frequency, the fatigue life of SBS decreases. The fatigue life of SBS under the amplitude and frequency was predicted, and the shift factor was applied to predict the fatigue life of SBS at the other frequency and amplitude. With the increase of temperature, the fatigue life decreases first and then increases. The fatigue fracture surface presents crack source region, crack propagation region, and instantaneous fracture region. At – 40°C, the crack source region is rough, and the crack propagation region and instantaneous fracture region are rough with the rib morphology. With the increase of temperature at 23°C, the crack source region is relatively flat, and the crack propagation region presents the undulant surface. With the temperature further increased up to 50°C, the fracture surface is very flat, and the shell lines could be clearly seen. The crack growth rate of SBS increases with the increase of temperature. The gel structure of SBS is formed at high temperature through the chemical crosslinking.

Funder

Guangxi Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3