Thermal, mechanical, electrical properties of poystyrene/poly (styrene-b-isobutylene-b-styrene/carbon nanotube nanocomposites

Author:

Şen Sinan1ORCID,Cengiz Melek Irmak2ORCID,Tekay Emre1ORCID

Affiliation:

1. Department of Polymer Materials Engineering, Faculty of Engineering, Yalova University, Yalova, Turkey

2. Department of Polymer Materials Engineering, Institute of Science, Yalova University, Yalova, Turkey

Abstract

In this study, high impact polystyrene (HIPS) materials was prepared by using a styrenic elastomer (10, 20, 30 wt%) and carbon nanotube (CNT) (3, 5, 7, 10 phr) by melt blending technique as alternative to commercial HIPS including polybutadiene rubber. The poly (styrene- b-isobutylene- b-styrene) (SIBS) was used as thermoplastic elastomer with polystyrene (PS) to improve its poor impact resistance and CNT was added to PS/SIBS blend matrix to maintain its strength and stiffness. The modulus, tensile strength and toughness values of the blends decreased while those of impact resistance increased in comparison to neat PS. The impact strength of PS20SIBS blend containing 20 wt% SIBS was found to be approximately 530% higher than pure PS. The nanocomposites of the PS20SIBS exhibited a decrease in the size of SIBS particles with increasing CNT compared to PS20SIBS. This was ascribed to the increased viscosity of PS matrix via CNT filler, preventing the coalescence of the elastomer domains. Compared to the PS20SIS, its nanocomposites showed higher strength, modulus and toughness, but lower impact strength. The toughness of the nanocomposite containing 5 phr CNT (PS20SIBS-5CNT), increased by 117% while its creep deformation decreased by approximately 40%, in comparison with PS20SIBS blend. Although PS20SIBS-5CNT exhibited lower impact strength than the PS20SIBS blend due to the dispersion of smaller SIBS particles in the PS matrix, it still increased the impact strength of pure PS by 188%. The PS20SIBS-5CNT nanocomposite, which improved impact strength and creep resistance with optimal toughness and tensile modulus can be used as a novel HIPS material that tunes the hardness-toughness/impact balance effectively. Moreover, the same nanocomposite was found to reach the conductivity threshold by exhibiting 106 times lower electrical resistance in comparison with that containing 3 phr CNT, leading to a conductive filer network with 5 phr loading of the nanotubes into the system.

Funder

Scientific Research Projects Coordination Departments of Yalova University

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3