Polyurethanes from modified castor oil and chitosan

Author:

Arévalo-Alquichire Said12,Ramírez Claudia1,Andrade Laura1,Uscategui Yomaira12,Diaz Luis E3,Gómez-Tejedor José A45,Vallés-Lluch Ana4,Valero Manuel F1

Affiliation:

1. Energy, Materials and Environmental Group, GEMA, Universidad de La Sabana, Chia, Cundinamarca, Colombia

2. Doctoral program of Biosciense, Universidad de La Sabana, Chia, Cundinamarca, Colombia

3. Bioprospecting Research Group, GIBP, Universidad de La Sabana, Chia, Cundinamarca, Colombia

4. Center for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, Valencia, Spain

5. Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain

Abstract

Polyurethanes (PUs) from castor oil (CO), modified CO (MCO) by transesterification reaction, isophorone diisocyanate (IPDI) in an NCO/OH ratio equal to 1, and chitosan (CS) were synthesized to assess their potential as biomaterials. PUs were characterized by Fourier transform infrared spectroscopy, hydroxyl value (ASTM D1957), thermogravimetric analysis, Shore A hardness (ASTM D2240), and scanning electronic microscopy (SEM). Also, contact angle, water retention and in vitro degradation in PBS, and cell viability on fibroblast were performed. The hydroxyl value confirms CO modification, and IR analysis confirms urethane bond formation. The thermal assay does not show new degradation stages and polyol with a high functionality had better hardness performance due to the increase in cross-linking. The micrograph shows micro-phase separation of both polymers. The contact angle shows the hydrophobic surface with an angle over 65°, and the CS and polyol type do not affect swelling and in vitro degradation due to phase separation between both polymers. The cell viability was over 70% in all cases, and solid polymers and degradation products involve non-cytotoxic effects on the samples. The results suggest a potential for these formulations in the biomedical field.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3