Affiliation:
1. Mechanical Engineering Department, Malaviya National Institute of Technology, Jaipur, India
2. Mechanical Engineering Department, Anand International College of Engineering, Jaipur, India
3. Mechanical Engineering Department, Feroze Gandhi Institute of Engineering and Technology, Raebareli, India
Abstract
This research work examines the physical, mechanical, thermal, thermo-mechanical, and dry sliding wear performance of hybrid waste flyash particulates (F-class; 0-20 wt% @ step of 5%) – Lapinus fibres (fixed 10 wt%) reinforced Polyamide 66 polymer composites fabricated using the twin screw extruder and injection moulding machine. This follows worn surface morphology to understand the prevailing wear mechanisms responsible for surface damage during sliding. Optimization of control parameters and identification of their order of significance in the dry sliding wear process is performed using Taguchi’s design of experiments and analysis of variance (ANOVA). Further, ranking optimization of the hybrid composite specimens based on their performance metrics is analysed using the hybrid AHP-R method. It has been observed that the hybrid composite specimens having 10 wt% flyash particulates optimize the overall performance metrics; therefore, it may be recommended to fabricate parts or components for industrial usage. It tends to have an experimental density of 1.18 g/cc, voids content of 7.11%, water absorption of 3.87%, tensile strength of 105.95 MPa, flexural strength of 144.86 MPa, Rockwell hardness of 58.12 HRM, fracture toughness of 4.11 MPa√m, Impact strength of 1.86 J, thermal conductivity of 1.08 W/mK, and specific wear rate of 1.12 × 10−3 mm3/Nm. This observation was attuned to the ranking analysis using the hybrid AHP-R method.
Funder
Malaviya National Institute of Technology, Jaipur
Subject
Materials Chemistry,Polymers and Plastics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献