Parametric optimization and ranking analysis of basalt fiber–marble dust particulates–polyamide 66 polymer composites under dry sliding wear investigation

Author:

Sharma Ravi Prakash12,Sharma Ankit1,Jeganmohan Sudhanraj3,Kumar Mukesh1ORCID,Kumar Ashiwani4ORCID

Affiliation:

1. Mechanical Engineering Department, Malaviya National Institute of Technology, Jaipur, India

2. Mechanical Engineering Department, Anand International College of Engineering, Jaipur, India

3. Mechanical Engineering Department, St. Joseph University in Tanzania, Dar Es Salaam, Tanzania

4. Mechanical Engineering Department, Feroze Gandhi Institute of Engineering & Technology, Raebareli, India

Abstract

In this research work, hybrid polyamide 66–basalt fiber (10 wt%)–marble dust particulates (0–20 wt% with a variation of 5%) polymeric composites were designed and prepared through the injection molding method. Each composition sample was analyzed for its physical, mechanical, and thermal behavior. The Taguchi methodology was adopted to design experimental runs of dry sliding wear and for input operating parameter optimization, along with analysis of variance. Using a scanning electron microscope, worn-out surface micrograph examinations were carried out to comprehend wear mechanisms across the surface. Furthermore, a decision-making tool such as a hybrid Analytic Hierarchy Process – R method (hybrid AHP-R method) was applied to determine the ranking of the composites based on performance measures. The composition having polyamide 66 supplemented with 15 wt% marble dust particulate and 10 wt% basalt fiber tends to optimize overall performance measures. It shows voids content of 5.80%, water absorption of 2.54%, tensile strength of 117 MPa, flexural strength of 154 MPa, impact strength of 2.8 J, Rockwell hardness of 64 HRM, thermal conductivity of 1.11 W/mK, fracture toughness of 4.7 MPa√m, and specific wear rate of 7.05 × 10−4 mm3/Nm, respectively. Thus, it optimizes overall performance measures along with steady-state dry sliding wear behavior, which is in tune with the ranking results obtained by the hybrid AHP-R method.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3