Morphological/alignment properties of thermoplastic polyurethane nanofiber affected by processing parameters

Author:

Selver Erdem1,Karaca Neslihan2,Onen Aysen3,Ucar Nuray4ORCID,Altay Pelin4

Affiliation:

1. Faculty of Engineering, Textile Engineering Department, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey

2. Graduate School of Science Engineering and Technology, Chemistry Department, Istanbul Technical University, Istanbul, Turkey

3. Faculty of Sciences and Letters, Chemistry Department, Istanbul Technical University, Istanbul, Turkey

4. Faculty of Textile Technologies and Design, Textile Engineering Department, Istanbul Technical University, Istanbul, Turkey

Abstract

Thermoplastic polyurethane (TPU) in nanofiber or submicron fiber has widespread application areas including the biomedical applications, such as artificial vein, cell cultivation etc. due to both TPU’s and nanofiber’s morphological properties. The morphology and aligment of nanofibers obtained from electrospinning are significantly affected by process parameters, which affect their end uses. This study aims to investigate the effect of process parameters of electrospinning (nozzle axis type, collector type, collector speed and filler types) on morphological properties (fiber orientation, fiber diameter and porous structure) of thermoplastic polyurethanes. Experimental results showed that nanofiber diameter increased with an increase of collector speed due to the relaxation of extensible TPU nanofiber after spinning process. When the rotational speed of collector reaches to 2000 rpm, the orientation could be observed. Using rotational wire collector resulted in thinner and more oriented fibers compared to rotating cylinder collector. Adding salt particles results in thinnest and highly oriented nanofiber webs. Higly porous surfaces were obtained using coaxial technique at the same feeding rates with miscible solvents for both shell and core. It was seen that using solvent with low boiling point in core may lead to higher porous surfaces. Nanofiber diameter increased using coaxial nozzle instead of single axis nozzle.

Funder

TUBITAK

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3