A novel design of positive position feedback controller based on maximum damping and H2 optimization

Author:

Paknejad Ahmad1ORCID,Zhao Gouying1,Osée Michel1ORCID,Deraemaeker Arnaud2,Robert Frédéric1,Collette Christophe13

Affiliation:

1. BEAMS Department, Université Libre de Bruxelles, Belgium

2. BATir Department, Université Libre de Bruxelles, Belgium

3. Department of Aerospace and Mechanical Engineering, Université de Liége, Belgium

Abstract

Positive position feedback is an attractive control law for the control of plants having no high frequency roll-off. The tuning of the parameters of the positive position feedback to obtain the desired closed-loop performance is quite challenging. This paper presents a technique to design the positive position feedback controller with the optimal damping. The technique is demonstrated on a single degree-of-freedom system. The poles of the positive position feedback are tuned using the method of maximum damping, which states that the maximum damping is achieved when both closed-loop poles of the system are merged. The parameters of the positive position feedback are dependent on the desired target damping in the closed-loop system. However, arbitrary choice of target damping results in high response at the frequencies lower than the tuning frequency. The optimal value of the target damping is obtained by minimizing the [Formula: see text] norm of the closed-loop transfer function of the system. The influence of the various parameters of the positive position feedback on the closed-loop response of the system is also studied. Finally, the experiments are conducted to verify the effectiveness of the proposed technique.

Funder

Wal’innov project

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3