A Self-Sensing Piezoelectric Actuator for Collocated Control

Author:

Dosch Jeffrey J.1,Inman Daniel J.1,Garcia Ephrahim2

Affiliation:

1. Mechanical Systems Laboratory Department of Mechanical and Aerospace Engineering 1012 Furnas Hall State University of New York at Buffalo Buffalo, NY 14260

2. Department of Mechanical Engineering Vanderbilt University Nashville, TN 37203

Abstract

A technique has been developed which allows a single piece of piezoelec tric material to concurrently sense and actuate in a closed loop system. The motivation behind the technique is that such a self-sensing actuator will be truly collocated and has applications in active and intelligent structures, such as vibration suppression. A theoreti cal basis for the self-sensing actuator is given in terms of the electromechanical consti tutive equations for a piezoelectric material. In a practical implementation of the self- sensing actuator an electrical bridge circuit is used to measure strain. The bridge circuit is capable of measuring either strain or time rate of strain in the actuator. The usefulness of the proposed device was experimentally verified by actively damping the vibration in a cantilever beam. A single piezoceramic element bonded to the base of the beam functioned both as a distributed moment actuator and strain sensor. Using a rate feedback control law, the first mode of vibration was suppressed, reducing the settling from 35 seconds to 2.5 seconds. Using a positive position feedback law the first two modes of vibration were suppressed; the first mode settling time was reduced from 35 to 0.3 sec onds and the second mode settling time was reduced from 7 seconds to 0.9 seconds.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 582 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3