Vibration control mechanism of the metabarrier under train load via numerical simulation

Author:

Zhao Caiyou12,Wang Liuchong12ORCID,Liu Dongya12,Gao Xing12,Sheng Xi12ORCID,Ping Wang12ORCID

Affiliation:

1. Key Laboratory of High-speed Railway Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu, People's Republic of China

2. School of Civil Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China

Abstract

The problem of ambient vibration caused by rail transit continues to grow, and control effect requirements of different vibration reduction measures are always increasing. A new kind of vibration isolator used for floating slab tracks (FST) has been developed, called a metabarrier. Based on the bandgap properties of phononic crystals, it can realize a better vibration reduction capacity in certain frequency ranges with the same vertical stiffness as the original device. In order to study the vibration reduction characteristics of metabarriers under actual train loading action, two vibration isolators—a steel-spring vibration isolator and a metabarrier—were used to establish a train–FST–substrate dynamic coupling model. This study shows that the reduction capacity influenced by the phononic crystal bandgap is stable under different train speeds. In addition, under train load, the metabarrier can be used not only to isolate vibration by means of the bandgap, but also to absorb vibration dynamically, further expanding the vibration reduction frequency range. With optimized frequency range, metabarriers can reduce the acceleration vibration level by more than 9 dB over steel-spring vibration isolators.

Funder

the Research Fund for key research and development projects in Sichuan Province

the National Natural Science Foundation of China

the National Key Research and Development Program of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3