Fuzzy logic and proportional integral derivative based multi-objective optimization of active suspension system of a 4×4 in-wheel motor driven electrical vehicle

Author:

Bingül Ömer1ORCID,Yıldız Ahmet1ORCID

Affiliation:

1. Department of Automotive Engineering, Faculty of Engineering, Bursa Uludağ University, Bursa, Turkey

Abstract

This paper considers fuzzy logic and proportional integral derivative based multi-objective optimization of a non-linear active suspension system of a 4 × 4 in-wheel motor-driven electric vehicle by using the non-dominated sorting genetic algorithm II. The active suspension system of the electric vehicle and its controllers are optimized to achieve International Organization for Standardization2631-1 ride comfort and health criteria, also providing the actual working conditions such as roll angle and tire load transfers simultaneously for driving safety. In this regard, a non-linear full electrical vehicle model with quadratic tire and cubic suspension stiffnesses with 11 degrees of freedom and a seat-driver model with 5 degrees of freedom are implemented and optimized regarding seven objective functions determined from the root mean square of head and seat accelerations, crest factor , vibration dose value , the ratio of head and seat accelerations, the ratio of the upper torso and seat acceleration, root mean square upper torso acceleration, and root mean square of suspension, tire, and in-wheel motor displacements. The design variables of the optimization problem are chosen as the stiffnesses and damping coefficients of the suspension, in-wheel motors, and seat, as well as the parameters of the proportional derivative and fuzzy logic controllers. The obtained results demonstrate that significant improvements can be achieved by using a controller over the passive systems. It is also noted that the fuzzy logic controller improves ride comfort and the health criterion over proportional derivative system up to 13%, while the load transfer ratio index showed no adverse change between models concerning the rollover condition. The outcomes of this work clearly state that significant improvements, in terms of vibration exposure, can be achieved with the help of reducing the vibration amplitude of an in-wheel motor-driven electrical vehicle active suspension system by using multi-objective optimization considering a non-linear full vehicle model and realistic working conditions such as tire load transfer and vehicle body roll during cornering circumstances. Thus, obtained results are of utmost importance for manufacturers about the active suspension design process providing both a safe and comfortable driving of in-wheel driven electric vehicles.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3