Efficiency improvement of vehicle active suspension based on multi-objective integrated optimization

Author:

Sun Wei12,Li Yinong12,Huang Jingying1,Zhang Nong3

Affiliation:

1. State Key Laboratory of Mechanical Transmission, Chongqing University, China

2. College of Automotive Engineering, Chongqing University, China

3. School of Electrical, Mechanical and Mechatronic Systems, University of Technology Sydney, Australia

Abstract

Active suspension can effectively resolve the contradictions between vehicle ride comfort and stability. However, a new contradiction between the active suspension performance and efficiency is aroused. Active suspension with excellent performance requires high actuation power and force in an aggressive condition, which is usually an excess capacity for normal conditions. To improve the efficiency and capacity utilization rate, this paper conducted an investigation on the efficiency and utilization rate of vehicle active suspension based on a seven degrees-of-freedom full vehicle mode with a linear quadratic Gaussian active suspension controller. The multiple objectives of active suspension performance and efficiency are integrally optimized via genetic algorithm with an elaborately designed penalty function. The proposed integration of multiple objectives is proved effective according to the comprehensive comparison analysis. The overall performance of the optimized suspension achieved the Pareto optimality. Not only a better balance between the ride comfort and stability is accomplished, but also the active suspension utilization rate is improved. By this method, the obtained Pareto optimality set can greatly improve the parameters matching and design of the active suspension.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3