A new energy-feeding variable damping control strategy for electromagnetic hybrid suspension systems

Author:

Wang Guohong1ORCID,Kou Farong1,Zhang Xinqian1ORCID,Xu Jianan1,Liu Pengtao1ORCID

Affiliation:

1. School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an, Shaanxi, China

Abstract

Traditional energy-feeding suspensions exhibit a non-adjustable damping characteristic during energy recovery, which can compromise the dynamic performance of the suspension system. To overcome this issue, this paper proposes an energy-feeding variable damping control strategy (EFVD) predicated on an electromagnetic hybrid suspension system. This strategy aims to achieve adjustable damping during energy recovery, reducing energy losses while ensuring optimal suspension performance. Building on a half-vehicle suspension model, we construct a dynamic model of the electromagnetic hybrid suspension. By leveraging an enhanced hybrid-skyhook and ground-hook control algorithm (HSGH), we solve for the target control force. We then design a force distribution controller based on the EFVD strategy, aiming to optimize suspension dynamic performance and energy feeding efficiency. And we conduct a simulation study, measuring power supply efficiency and suspension dynamic performance as key evaluation metrics. The results demonstrate the superiority of the proposed EFVD strategy over conventional passive and active suspension control strategies, highlighting its effectiveness and reliability in maintaining dynamic performance while enhancing energy efficiency. This underscores the potential of the EFVD strategy as a practical solution for future suspension system design and energy management.

Funder

Xi’an Science and Technology Development Program

Xianyang Key Research and Development Program

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3