Abstract
This article deals with the analysis of free vibration of an axially moving truncated conical shell. Based on the classical linear theory of elasticity, Donnell shell theory assumptions, Hamilton principle, and Galerkin method, the motion equations of axially moving truncated conical shells are derived. Then, the perturbation method is used to obtain the natural frequency of the system. One of the most important and controversial results in studies of axially moving structures is the velocity detection of critical points. Therefore, the effect of velocity on the creation of divergence instability is investigated. The other important goal in this study is to investigate the effect of the cone angle. As a novelty, our study found that increasing or decreasing the cone angle also affects the critical velocity of the structure in addition to changing the natural frequency, meaning that with increasing the cone angle, the instability occurs at a lower velocity. Also, the effect of other parameters such as aspect ratio and mechanical properties on the frequency and instability points is investigated.
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献