Modeling and Free Vibration Analysis of Variable Stiffness System for Sandwich Conical Shell Structures with Variable Thickness

Author:

Wang Z. Q.1,Yang S. W.1ORCID,Hao Y. X.1,Zhang W.2,Ma W. S.3,Zhang X. D.4

Affiliation:

1. College of Mechanical Engineering and Beijing, Key Laboratory of Measurement and Control of Mechanical and Electrical System, Beijing Information Science and Technology University, Beijing 100192, P. R. China

2. Department of Mechanics, Guangxi University, Nanning 530004, P. R. China

3. Department of Mechanics, Inner Mongolia University of Technology, Hohhot 010051, P. R. China

4. Institute of Magnetic Levitation and Electromagnetic Propulsion, China Aerospace Science and Industry Corp., Beijing 100143, P. R. China

Abstract

This paper presents modeling and free vibration analysis of variable stiffness system for the truncated sandwich conical shell made of porous aluminum foam core with variable thickness and carbon fiber face sheets under the simply supported boundary condition. The thickness of the core layer varies along the longitudinal direction. Five different types of porosity distribution of the aluminum foam core, which contains Type-X, Type-O, Type-U, Type-V and Type-[Formula: see text] along the direction of thickness, are considered. Considering the effect of thermal environment, we derive the nonlinear dynamic equations based on first-order shear deformation theory and Hamilton’s principle, and obtain the natural frequencies of the system by employing the Galerkin method. The comparison and validation are conducted by contrast with the determined results of the literature. The influences of porosity distribution pattern, porosity coefficient, the total number of layers, temperature increment, semi-vertex angle, the exponent of thickness function, the minimum radius-thickness and length-thickness ratio of the core layer on the natural frequencies, modal and mode shapes are studied comprehensively.

Funder

National Natural Science Foundation of China

Scientific Research Project of Beijing Educational Committee

Qin Xin Talents Cultivation Program, Beijing Information Science & Technology University QXTCP

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3