Fractional-order robust model reference adaptive control of piezo-actuated active vibration isolation systems using output feedback and multi-objective optimization algorithm

Author:

Kang Shengzheng1ORCID,Wu Hongtao1,Yang Xiaolong2ORCID,Li Yao1ORCID,Wang Yaoyao1

Affiliation:

1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People’s Republic of China

2. Laboratory of Biomechatronic and Intelligent Robotics, Department of Mechanical Engineering, The City University of New York, City College, NY 10023, USA

Abstract

Improving the control performance of active vibration isolation systems is crucial to provide an ultra-quiet environment for precision instruments. This paper presents a new fractional-order robust model reference adaptive controller for the piezo-actuated active vibration isolation systems with a relative-degree-one model. One advantage of the proposed controller lies in that its controller parameters are adjusted online by fractional proportional–integral-type adaptive laws, which not only speeds up the convergence of the closed-loop system, but also improves the control energy efficiency. Moreover, the proposed controller only uses the measurable input and output of the plant as feedback signals, which is convenient for controller implementation. The stability of the closed-loop system is proved based on the Lyapunov theory in detail. The optimal values of the fractional order and adaptive gains for adaptive laws are determined using the multi-objective genetic algorithm through off-line simulation. Comparative experiments on the piezo-actuated active vibration isolation systems are conducted to verify the effectiveness of the proposed controller. Results show that the proposed controller achieves satisfactory isolation performance in a wider frequency band of 20–500 Hz, and simultaneously reduces the control effort compared with the traditional MRAC methods.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3