Model-free adaptive full-order sliding mode control with time delay estimation of high-pressure common rail system

Author:

Long Yun1ORCID,Liu Xiaoyang1,Yao Chong2ORCID,Song Enzhe2

Affiliation:

1. College of Power and Energy Engineering, Harbin Engineering University, Harbin, China

2. Yantai Research Institute, Harbin Engineering University, Yantai, China

Abstract

This paper presents a new model-free adaptive full-order sliding mode control (MAFOSMC) approach for addressing the challenge of precise control for the high-pressure common rail system (HPCRS) in marine engines. First, the mathematical model of HPCRS is modeled based on the hydrodynamics and the problem statement is presented. The model-free control structure is designed by adopting time delay control (TDC) technology, which can estimate uncertain and unknown dynamics without exact priori information about the system. Furthermore, the continuous sliding mode controller is developed to exhibit features of high accuracy, strong robustness, fast response based on full-order sliding mode control (FOSMC), and improved power reaching law. Then, a bidirectional adaptive strategy was designed to handle the unmodelled dynamics and unknown disturbances. The stability analysis of the closed-loop system is conducted using Lyapunov theory. Overall, the experimental comparisons were conducted with traditional FOSMC under three different testing scenarios, validating the efficacy and benefits of the proposed MAFOSMC approach for marine engines.

Funder

High-Tech Ship Scientific Research Project of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3