Abstract
AbstractThis paper proposes an adaptive fractional-order sliding mode controller to control and stabilize a nonlinear uncertain disturbed robotic manipulator in fixed-time. Fractional calculus is used to construct a fractional-order sliding mode controller (FtNTSM) that suppresses chattering to help the robotic manipulator converge to equilibrium in a fixed-settling time based on fixed-time stability theory. Then, adaptive control is introduced and combined with FtNTSM to overcome the unknown system dynamics. The convergence time of the proposed fixed-time fractional-order sliding mode controller (AFtNTSM) is independent of beginning circumstances and can be precisely assessed, unlike the finite-time control approach. Finally, numerical simulations show that the adaptive fractional-order sliding mode controller outperforms finite-time sliding mode controller.
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献