Affiliation:
1. College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China
2. College of Aeronautical Engineering, Anyang Vocational and Technical College, Anyang 455000, China
Abstract
Compared with traditional control methods, moving mass control (MMC) enhances the aerodynamic efficiency and stealth performance of fixed-wing unmanned aerial vehicles (FWUAVs), thereby facilitating their broader application in military and civilian fields. Nevertheless, this approach increases system complexity, nonlinearity, and coupling characteristics. To address these challenges, a novel attitude controller is proposed using adaptive global fast terminal sliding mode (GFTSM) control. Firstly, a dynamic model is established based on aerodynamics, flight dynamics, and moving mass dynamics. Secondly, to improve transient and steady-state responses, prescribed performance control (PPC) is adopted, which enhances the controller’s adaptability for mass-actuated aircraft. Thirdly, a fixed-time extended state observer (FTESO) is utilized to solve the inertial coupling issue caused by mass block movement. Additionally, the performance of the entire control system is rigorously proven through the Lyapunov function. Finally, numerical simulations of the proposed controller are compared with those of PID and linear ADRC in three different conditions: ideal conditions, fixed aerodynamic parameters, and nonlinear aerodynamic parameter changes. The results indicate that the controller effectively compensates for the system’s uncertainty and unknown disturbances, ensuring rapid and accurate tracking of the desired commands.