Three-dimensional vibration analysis of functionally graded sandwich deep open spherical and cylindrical shells with general restraints

Author:

Ye Tiangui1,Jin Guoyong1,Su Zhu1

Affiliation:

1. College of Power and Energy Engineering, Harbin Engineering University, Harbin, PR China

Abstract

This paper presents three-dimensional (3D) vibration analysis of functionally graded (FG) sandwich deep open shells with general boundary restraints, including open spherical shells and the cylindrical ones. FG sandwich deep open shells composed of homogeneous cores and functionally graded material face sheets with material properties vary continuously through the thickness direction are considered in the present work. The 3D theory of elasticity in conjunction with an energy-based improved Fourier series method are combined to develop the theoretical formulation, in which each displacement of a deep open shell is approximated in terms of a triplicate product of the cosine Fourier series with the addition of certain supplementary terms introduced to remove the potential discontinuities associated with the original displacement and its relevant derivatives at the boundary faces. By using the present method, FG sandwich deep open shells with general boundary restraints, arbitrary geometry parameters, different material distributions and lamination schemes can be solved in a unified form. The accuracy and reliability of the present formulation are validated by comparisons with FEM solutions and those in the literature, and excellent agreements are obtained. Several 3D vibration results of FG sandwich deep open cylindrical and spherical shells with different dimensions in the meridional, circumferential and normal directions are presented for various types of boundary conditions and many representative lamination schemes, which may serve as benchmark solutions for future researchers in assessing two-dimensional approximate theories.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3