Historical review of Zig-Zag theories for multilayered plates and shells

Author:

Carrera Erasmo1

Affiliation:

1. Department of Aeronautics and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; carrera@polito.it

Abstract

This paper gives a historical review of the theories that have been developed for the analysis of multilayered structures. Attention has been restricted to the so-called Zig-Zag theories, which describe a piecewise continuous displacement field in the plate thickness direction and fulfill interlaminar continuity of transverse stresses at each layer interface. Basically, plate and shell geometries are addressed, even though beams are also considered in some cases. Models in which the number of displacement variables is kept independent of the number of constitutive layers are discussed to the greatest extent. Attention has been restricted to those plate and shell theories which are based on the so-called method of hypotheses or axiomatic approach in which assumptions are introduced for displacements and/or transverse stresses. Mostly, the work published in the English language is reviewed. However, an account of a few articles originally written in Russian is also given. The historical review conducted has led to the following main conclusions. 1) Lekhnitskii (1935) was the first to propose a Zig-Zag theory, which was obtained by solving an elasticity problem involving a layered beam. 2) Two other different and independent Zig-Zag theories have been singled out. One was developed by Ambartsumian (1958), who extended the well-known Reissner-Mindlin theory to layered, anisotropic plates and shells; the other approach was introduced by Reissner (1984), who proposed a variational theorem that permits both displacements and transverse stress assumptions. 3) On the basis of historical considerations, which are detailed in the paper, it is proposed to refer to these three theories by using the following three names: Lekhnitskii Multilayered Theory, (LMT), Ambartsumian Multilayered Theory (AMT), and Reissner Multilayered Theory (RMT). As far as subsequent contributions to these three theories are concerned, it can be remarked that: 4) LMT although very promising, has almost been ignored in the open literature. 5) Dozens of papers have instead been presented which consist of direct applications or particular cases of the original AMT. The contents of the original works have very often been ignored, not recognized, or not mentioned in the large number of articles that were published in journals written in the English language. Such historical unfairness is detailed in Section 3.2. 6) RMT seems to be the most natural and powerful method to analyze multilayered structures. Compared to other theories, the RMT approach has allowed from the beginning development of models which retain the fundamental effect related to transverse normal stresses and strains. This review article cites 138 references.

Publisher

ASME International

Subject

Mechanical Engineering

Reference139 articles.

1. Cauchy AL (1828), Sur l’e´quilibre et le mouvement d’une plaque solide, Exercises de Matematique 3, 328–355.

2. Poisson SD (1829), Memoire sur l’e´quilibre et le mouvement des corps elastique, Mem. Acad. Sci. 8, 357357.

3. Kirchhoff G (1850), U¨ber das Gleichgewicht und die Bewegung einer elastischen Scheibe, J Angew Math 40, 51–88.

4. Love AEH (1927), The Mathematical Theory of Elasticity, 4th Edition, Cambridge Univ Press, Cambridge.

5. Reissner E (1945), The effect of transverse shear deformation on the bending of elastic plates, ASME J. Appl. Mech. 12, 69–76.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3