Active vibration control using piezoelectric actuators employing practical components

Author:

Williams D1ORCID,Haddad Khodaparast H1,Jiffri S1,Yang C2

Affiliation:

1. College of Engineering, Swansea University, UK

2. Bristol Robotics Laboratory, University of the West of England, Bristol, UK

Abstract

Unwanted vibrations are a common occurrence within structures and systems, and often pose a threat to their integrity or functionality. This research aims to seek a solution to attenuate the vibrations experienced within a link of a system using active vibration control with piezoelectric patches as actuators, whilst avoiding the use of large and expensive equipment which would contravene with the common objective of maintaining the smallest mass possible of the system. Previous research has employed large and expensive equipment as the controller, with sensors often only being able to measure the vibrations of the structure along one axis; this research aims to address these issues. The choice of utilizing the small, lightweight, and low-cost Raspberry Pi 3 combined with petite, mountable sensors and actuators was made based upon the greater practicality that the controller, sensors, and actuators exhibit, allowing for their use in a wide variety of applications. An analytical model of the structure was created based on Euler–Bernoulli beam theory and validated through the modal parameters and the frequency response obtained from a finite element model and experimental data. A controller was then designed and applied to the analytical model to attenuate the vibrations along the link, and then the same design was implemented within the Raspberry Pi 3, and experimental studies were carried out. The introduction and effectiveness of a purposeful time delay within the controller was explored within the experimental and analytical studies, with the intention of counteracting unfavorable results produced by the control system. The results of the experiment proved the control design to be effective for a range of frequencies that included the first natural frequency of the link, and validated the analytical model including the control design.

Funder

Doctoral Training Partnership

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3