Order-statistic filtering Fourier decomposition and its application to rolling bearing fault diagnosis

Author:

Huang Siqi12,Zheng Jinde12ORCID,Pan Haiyang2ORCID,Tong Jinyu2

Affiliation:

1. Anhui Key Laboratory of Mine Intelligent Equipment and Technology, Anhui University of Science & Technology, China

2. School of Mechanical Engineering, Anhui University of Technology, China

Abstract

Inspired by the empirical wavelet transform method, a newly nonstationary signal analysis method–termed order-statistic filtering Fourier decomposition is proposed in this article. First, order-statistic filtering Fourier decomposition uses order-statistic filtering and smoothing to preprocess the Fourier spectrum of original signal, which resolves the problem of unreasonable boundaries obtained by empirical wavelet transform in segmenting the Fourier spectrum. Then, the mono-components with physical significance are obtained by adaptively reconstructing the coefficient of fast Fourier transform in each interval, which improves the problem of too many false components obtained by Fourier decomposition method. The order-statistic filtering Fourier decomposition method is compared with the existing nonstationary signal decomposition methods including empirical mode decomposition, empirical wavelet transform, Fourier decomposition method, and variational mode decomposition through analyzing simulation signals, and the result indicates that order-statistic filtering Fourier decomposition is much more accurate and reasonable in obtaining mono-components. After that, the order-statistic filtering Fourier decomposition method is compared with the mentioned methods in diagnostic accuracy through analyzing the tested faulty bearing vibration signals and the effectiveness of order-statistic filtering Fourier decomposition to the comparative methods in bearing fault identification are verified.

Funder

Anhui Key Laboratory of Mine Intelligent Equipment and Technology, Anhui University of Science & Technology

The University Natural Science Key Project of Anhui Province

The National Key Research and Development Program of China

The National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3