A gear fault diagnosis method based on reactive power and semi-supervised learning

Author:

Liang GuangyuORCID,Li FengORCID,Pang Xinyu,Zhang Bowen,Yang Peng

Abstract

Abstract In gearbox gear fault diagnosis based on motor current signals, the gear fault characteristic frequency component is often overshadowed by the fundamental frequency component of the current. In addition, the complex working conditions during actual production and use make it difficult to collect gear operation monitoring data containing labeled feature information. To address the above problems, a semi-supervised learning method based on reactive power signals is proposed for gear fault diagnosis of gearboxes. First, the method utilizes the Hilbert transform to process the current signal of the drive motor in the mechanical system, from which the reactive power is constructed. Then, the reactive power signal is analyzed by spectral analysis as a basis for gear fault diagnosis. Subsequently, the GAF-CNN-MTDL(Gramian angular field—convolutional neural network-mean teacher deep learning) fault diagnosis model is proposed to convert the reactive power signal into a two-dimensional image by using the GAF, and the semi-supervised training method of the average teacher is applied to input the fault dataset into the gear fault diagnosis model which is based on the CNN as the main backbone after the fault dataset has been divided into the labeled and the unlabeled dataset in accordance with a certain ratio. Finally, the gear fault dataset is used for method validation. The experimental outcomes demonstrate the method’s proficiency in effectively emphasizing the fault feature information pertaining to the gear part, and the introduced GAF-CNN-MTDL fault diagnosis model enables the utilization of a minimal number of labeled samples to achieve highly accurate gear fault diagnosis.

Funder

Applied Basic Research Project of Shanxi Province

National Natural Science Foundation of China

Key Research and Development Project of Shanxi Province

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3