Online measuring and estimating methods for the unbalancing vector of thin-disc workpiece based on the adaptive influence coefficient

Author:

Zhang Shihai1ORCID,Zhang Zimiao1

Affiliation:

1. College of Mechanical Engineering, Tianjin University of Technology and Education, China

Abstract

The thin-disc part is the common part of the rotary mechanism. Because of the large rotating radius of the thin-disc part, the huge unbalancing vector may be formed even if the unbalancing mass is small. So, the unbalance of the thin-disc part is the important exciting factor of the rotary mechanism vibration. Based on the structural characteristics of the thin-disc part, the measuring and estimating methods for the unbalancing vector of the thin-disc workpiece are proposed based on the single-face influence coefficient method. The least square method is introduced to fit the fundamental frequency component from the vibration monitoring signal, and the fundamental frequency component is taken as the unbalancing vibration signal of spindle first. The influence coefficient between the trial weight face and vibration monitoring point on the spindle is tested by trial weight experiments second. The unbalancing vibration difference of the spindle, before and after the thin-disc workpiece is clamped, is monitored and used to estimate the unbalancing vector of the thin-disc workpiece based on the linear reversible principle of unbalancing excitation and vibration response. The signal separation accuracy of the least square method for unbalancing vibration has been proved by simulation and experiment methods. Considering that the accuracy of the influence coefficient may be influenced by the change of the spindle system kinetic characteristic parameters, the signal measurement, analysis error, etc., the adaptive method for the influence coefficient is proposed and proved by the experiment method in the article. The research results show that the unbalancing vector of the thin-disc workpiece can be measured and estimated before the workpiece is taken down from the machine tool spindle. The proposed method can be used to measure and estimate the unbalancing vector of the thin-disc workpiece without dynamic balancing machine, and the measuring efficiency and accuracy can be improved; the measuring cost can be reduced.

Funder

National Natural Science Foundation of China

Tianjin Municipal Education Commission

Tianjin Application Foundation and Advanced Technology Research Program

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3