A New Method for Field-Balancing of High-Speed Flexible Rotors without Trial Weights

Author:

Khulief Y. A.1,Mohiuddin M. A.2,El-Gebeily M.3

Affiliation:

1. Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, KFUPM Box 1767, Dhahran 31261, Saudi Arabia

2. Data & Consulting Services, Schlumberger, Dhahran Tech Valley, Dhahran 31261, Saudi Arabia

3. Department of Mathematics, King Fahd University of Petroleum & Minerals, KFUPM Box 1767, Dhahran 31261, Saudi Arabia

Abstract

Flexible rotor balancing, in general, relies to a great extent on physical insight into the modal nature of the unbalance response. The objective of this investigation is to develop a hybrid experimental/analytical technique for balancing high-speed flexible rotors. The developed technique adopts an approach that combines the finite element modeling, experimental modal analysis, vibration measurements, and mathematical identification. The modal imbalances are identified and then transformed to the nodal space, in order to determine a set of physical balancing masses at some selected correction planes. The developed method does not rely on trial runs. In addition, the method does not require operating the supercritical rotor in a high-speed balancing facility, while accounting for the contribution of higher significant modes. The developed scheme is applied to a multidisk, multibearing, high-speed flexible rotor, where the interaction between the rotor-bending operating deflections and the forces resulting from the residual unbalance are appreciable. Some new benchmark solutions and observations are reported. The applicability, reliability, and challenges that may be encountered in field applications are addressed.

Funder

King Abdulaziz City for Science & Technology

Publisher

Hindawi Limited

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3