Development of Rotor Balancing Algorithm for a High‐Precision Rotor System considering Dynamic Reliability through Automatic‐Adaptive DBSCAN

Author:

Jung Joon HaORCID,Kim Byungock,Na Woong Jae,Shin Yun-hoORCID

Abstract

Recently, the demand for high‐precision balancing of rotors has increased in the automobile industry, as more rotors are designed to rotate at ever‐higher speeds to maximize energy efficiency. The accumulation of measurement uncertainty in the balancing process decreases the accuracy of the unbalanced mass estimation, which is the ultimate goal of balancing. Here, the problem of uncertainty is shown through a Monte Carlo simulation of signals acquired from an actual production line. To reduce the effect of measurement uncertainty in the balancing procedures, a signal‐processing technique that increases the dynamic reliability of the signal is proposed. The suggested method is based on density‐based spatial clustering of applications with noise (DBSCAN) with the use of the orthogonality‐based averaging method. Specifically, by adjusting radius values while clustering samples through the use of the DBSCAN method, the outliers that arise due to uncertainty are successfully removed. In this work, our proposed automatic‐adaptive DBSCAN (AA‐DBSCAN) method is validated by applying it to a balancing machine used for blower rotors in fuel cell electric vehicles. The results show that the deviation of the extracted influence coefficients is up to 0.0050, whereas the proposed method reduced it to less than 0.0037. In addition, the suggested procedure reduced the deviations of the unbalanced mass phase estimation by 35.2% as compared to the results found by the conventional method. Consequently, through the validation test, the suggested method was found to have the largest vibration decrease of any method considered in the study.

Funder

Ministry of Trade, Industry and Energy

National Research Foundation of Korea

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3