Diversity entropy-based Bayesian deep learning method for uncertainty quantification of remaining useful life prediction in rolling bearings

Author:

Bai Rui1,Li Yongbo1ORCID,Noman Khandaker1,Wang Shun1

Affiliation:

1. School of Aeronautics, Northwestern Polytechnical University, China

Abstract

Remaining useful life (RUL) prediction of rolling bearings plays a critical role in reducing unplanned downtime and improving machine productivity. The existing prediction methods primarily provide point estimates of RUL without quantifying uncertainty. However, uncertainty quantification of RUL is crucial to conduct reliable risk analysis and make maintenance decision, which can significantly decrease the maintenance costs. To solve the uncertainty quantification problem and improve prediction accuracy at the same time, a novel diversity entropy-based Bayesian deep learning (DE-BDL) method is proposed. First, start degradation time (SDT) of bearings is adaptively determined using diversity entropy, which can extract early degradation information. Then, multi-scale diversity entropy (MDE) is developed to extract dynamic characteristics over multiple scales. Third, the obtained features using MDE are fed into the BDL model for degradation tracking and prediction. By doing this, the proposed DE-BDL method has merits in subsequent decision making, which can not only provide point estimation but also offer uncertainty quantification with epistemic uncertainty and aleatoric uncertainty. The superiority of the proposed method is validated using run-to-failure data. The experimental results and comparison with state-of-art prediction methods have demonstrated that the proposed DE-BDL method is promising for RUL of rolling bearings.

Funder

Key Laboratory of Equipment Research Foundation

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3