Bearing fault diagnosis based on multi-scale permutation entropy and adaptive neuro fuzzy classifier

Author:

Tiwari Rohit1,Gupta Vijay K1,Kankar PK1

Affiliation:

1. PDPM-Indian Institute of Information Technology Design and Manufacturing Jabalpur, Jabalpur, India

Abstract

The rolling element bearing is among the most frequently encountered component in a rotating machine. Bearing fault can cause machinery breakdown and lead to productivity loss. A bearing fault diagnosis method has been proposed based on multi-scale permutation entropy (MPE) and adaptive neuro fuzzy classifier (ANFC). In this paper, MPE is applied for feature extraction to reduce the complexity of the feature vector. Extracted features are given input to the ANFC for an automated fault diagnosis procedure. Vibration signals are captured for healthy and faulty bearings. Experiment results pointed out that proposed method is a reliable approach for automated fault diagnosis. Thus, this approach has potential in diagnosis of incipient bearing faults.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3