Affiliation:
1. PDPM-Indian Institute of Information Technology Design and Manufacturing Jabalpur, Jabalpur, India
Abstract
The rolling element bearing is among the most frequently encountered component in a rotating machine. Bearing fault can cause machinery breakdown and lead to productivity loss. A bearing fault diagnosis method has been proposed based on multi-scale permutation entropy (MPE) and adaptive neuro fuzzy classifier (ANFC). In this paper, MPE is applied for feature extraction to reduce the complexity of the feature vector. Extracted features are given input to the ANFC for an automated fault diagnosis procedure. Vibration signals are captured for healthy and faulty bearings. Experiment results pointed out that proposed method is a reliable approach for automated fault diagnosis. Thus, this approach has potential in diagnosis of incipient bearing faults.
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
90 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献