Entropy-Based Methods for Motor Fault Detection: A Review

Author:

Aguayo-Tapia Sarahi1,Avalos-Almazan Gerardo1,Rangel-Magdaleno Jose de Jesus1ORCID

Affiliation:

1. Digital Systems Group, National Institute of Astrophysics, Optics and Electronics, Puebla 72840, Mexico

Abstract

In the signal analysis context, the entropy concept can characterize signal properties for detecting anomalies or non-representative behaviors in fiscal systems. In motor fault detection theory, entropy can measure disorder or uncertainty, aiding in detecting and classifying faults or abnormal operation conditions. This is especially relevant in industrial processes, where early motor fault detection can prevent progressive damage, operational interruptions, or potentially dangerous situations. The study of motor fault detection based on entropy theory holds significant academic relevance too, effectively bridging theoretical frameworks with industrial exigencies. As industrial sectors progress, applying entropy-based methodologies becomes indispensable for ensuring machinery integrity based on control and monitoring systems. This academic endeavor enhances the understanding of signal processing methodologies and accelerates progress in artificial intelligence and other modern knowledge areas. A wide variety of entropy-based methods have been employed for motor fault detection. This process involves assessing the complexity of measured signals from electrical motors, such as vibrations or stator currents, to form feature vectors. These vectors are then fed into artificial-intelligence-based classifiers to distinguish between healthy and faulty motor signals. This paper discusses some recent references to entropy methods and a summary of the most relevant results reported for fault detection over the last 10 years.

Publisher

MDPI AG

Reference118 articles.

1. Shannon, C., and Weaver, W. (1949). The Mathematical Theory of Communication, University of Illinois Press.

2. Characterization of Surface EMG Signal Based on Fuzzy Entropy;Chen;IEEE Trans. Neural Syst. Rehabil. Eng.,2007

3. Sample Entropy Statistics and Testing for Order in Complex Physiological Signals;Richman;Commun. Stat. Theory Methods,2007

4. A novel feature extraction method based on weighted multi-scale fluctuation based dispersion entropy and its application to the condition monitoring of rotary machines;Sharma;Mech. Syst. Signal Process.,2022

5. A bearing fault diagnosis method based on multiscale dispersion entropy and GG clustering;Zhang;Measurement,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3