Design of active suspension controller for train cars based on sliding mode control, uncertainty observer and neuro-fuzzy system

Author:

Nguyen Sy Dzung12,Nguyen Quoc Hung2

Affiliation:

1. Division of Computational Mechatronics, Institute for Computational Science (INCOS), Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam

2. Department of Mechanical Engineering, Industrial University of Ho Chi Minh City (IUH), Vietnam

Abstract

This paper focuses on building a controller for active suspension system of train cars in the case that the sprung mass and model error are uncertainty parameters. The sprung mass is always varied due to many reasons such as changing of the passengers and load or impacting of wind on the operating train while an unknown difference between the suspension model used for survey and the real suspension system also always exists. The controller is built based on an adaptive neuro-fuzzy inference system (ANFIS), sliding mode control, uncertainty observer (NFSmUoC) and a magnetorheological damper (MRD) which can be seen as an actuator for applying active force. A nonlinear uncertainty observer (NUO), a sliding mode controller (SMC) together with an inverse model of the MRD are designed in order to calculate the current value by which the MRD creates the required active control force u( t). An ANFIS and measured MR-damper-dynamic-response data sets are used to identify the MRD as an inverse MRD model (ANFIS-I-MRD). Based on dynamic response of the suspension, firstly the active control force u( t) is calculated by NUO and SMC, in which the impact of the uncertainty load on the system is estimated by the NUO. The ANFIS-I-MRD is then used to estimate applied current for the MRD in order to create the calculated active control force to control vertical vibration status of the train cars. Simulation surveys are carried out to evaluate the effectiveness of the proposed method.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3