Experiments on fuzzy sliding mode variable structure control for vibration suppression of a rotating flexible beam

Author:

Qiu Zhi-cheng12,Han Jian-da2,Liu Jin-guo2

Affiliation:

1. School of Mechanical and Automotive Engineering, South China University of Technology, PR China

2. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, PR China

Abstract

Space robots are a kind of coupling system with a rigid body and flexible structures, in which harmonic drive gears are usually used as speed reducers. Thus, the vibration problem is unavoidable due to maneuvering and external disturbances. This paper is concerned with the design and implementation of a fuzzy sliding mode control (FSMC) algorithm and a composite controller to dampen the vibration of a flexible manipulator with a flexible link and a harmonic drive gear (flexible joint). The designed controllers are used to dampen the end-point vibration of the flexible link and flexible joint manipulator, to compensate for unknown and time-varying nonlinear uncertain parameters, such as friction torque and flexible joint characteristics of a harmonic drive gear, etc. The experimental comparison research was conducted, including set-point active vibration control and vibration suppression under resonant excitation. The experimental results demonstrate that the FSMC and the composite algorithms can significantly enhance the performance of vibration suppression for flexible manipulator.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3