Stability analysis and control of a flywheel energy storage rotor with rotational damping and nonsynchronous damping

Author:

Wang Huiwei1,Peng Huichun1ORCID,Zhen Yaxin1ORCID

Affiliation:

1. School of Mathematics and Physics, North China Electric Power University, China

Abstract

Based on the principle of Lagrange mechanics, especially considering the effects of rotation damping and nonsynchronous damping, a radial 4-dimensional dynamic model of the flywheel bearing rotor system is proposed. Applying the Laplace eigenvalue method, the stability effects of rotational damping, nonsynchronous damping, and their coupling effects are investigated by means of root locus method. Under the control of the linear quadratic regulator, dynamical characteristics of the flywheel bearing rotor system with varied rotational damping and nonsynchronous damping are also studied. The results show that the rotation damping, nonsynchronous damping, and their coupling effects have vast and complex instability effects on high-speed flywheel bearing rotor system. However, there are three exceptions. The tiny proportional rotational damping, remaining below 12%, and the minuscule proportional co-nonsynchronous damping; the product of the nonsynchronous damping and the speed ratio below 5% both can enhance the stability of the system. Furthermore, in the situation that the counter-nonsynchronous damping is coupled with the large proportion of rotational damping, the stability of the system can also be boosted distinctly. On the other hand, the numerical experimental results show that the rotational damping and nonsynchronous damping have a beneficial effect on the flywheel system controlled by linear quadratic regulator. In addition, under the control of linear quadratic regulator, the transient dynamical behavior of the flywheel rotor system with rotational damping or co-nonsynchronous damping performed better than the flywheel rotor system with the coupled damping. The numerical simulations of the transient response of the flywheel rotor system under active control are consistent with some of the derived stability analysis results. The results about the stability analysis and the performance in vibration control give the suggestions for the instability control and fault detection of the system.

Funder

Central Universities in China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3