Affiliation:
1. Department of Mechanical Engineering, Dalian Maritime University, People’s Republic of China
Abstract
Multi-degree-of-freedom multiple table systems are developed for seismic testing of large-span structures to spread the loads evenly on the tables. Synchronous control of multiple shaking tables is challenging because of coupling between different shaking tables and complex dynamics of the testing systems. This article presents an adaptive waveform control for a two-degree-of-freedom dual electrohydraulic shaking tables testing system to improve the acceleration tracking performance. Synchronous control of the two electrohydraulic shaking tables is transformed into the motion control of a two-degree-of-freedom overconstrained shaking table driven by 10 actuators. The force control loop based on the null space of the Jacobian matrix is developed to reduce the cross-coupling among the actuators. An adaptive acceleration waveform control method based on the DFP optimization algorithm in a complex domain is presented to improve the convergence and stability of the compensation algorithm in the outer control loop and replicate the acceleration reference waveforms accurately. Experimental results obtained in step responses, acceleration frequency responses measurement, and two-degree-of-freedom waveform replication tests are used to demonstrate the effectiveness of the proposed method.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities of Dalian Maritime University
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献