Implementation and verification of real-time hybrid simulation (RTHS) using a shake table for research and education

Author:

Ashasi-Sorkhabi Ali1,Malekghasemi Hadi1,Mercan Oya1

Affiliation:

1. Department of Civil Engineering, University of Toronto, Canada

Abstract

In this study, as a state of the art testing method, real-time hybrid simulation (RTHS) is implemented and verified with a shake table for education and research. As an application example, the dynamic behavior of a tuned liquid damper (TLD)-structure system is investigated. RTHS is a practical and economical experimental technique which complements the strengths of computer simulation with physical testing. It separates the test structure into two substructures where part of the structure for which a reliable analytical model is not available is tested physically (experimental substructure) and coupled together with the analytical model of the remaining structure (analytical substructure). The implementation of RTHS involves challenges in accurate control of the experimental substructure as well as the synchronization of the signals. The details of the hardware and the software developed and the steps taken to improve the controller are discussed in this paper so that the implementation of RTHS is properly introduced. The accuracy has been verified using tracking indicators as well as using the response obtained from a spring-mass oscillator and TLD system. The shake table used in this study is available in over 100 universities around the world. In this paper, the implementation of RTHS is provided with sufficient details to enable easy introduction of this testing method wherever a similar shake table is available. This additional functionality will not only provide a new research tool, but it will also facilitate classroom demonstrations to improve how students understand new concepts in structural dynamics and earthquake engineering.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3