Maneuver load alleviation for high performance aircraft robust to flight condition variations

Author:

Li Hongkun1ORCID,Huang Rui1,Zhao Yonghui1,Hu Haiyan1

Affiliation:

1. Institute of Vibration Engineering Research, State Key Laboratory of Mechanics and Control for Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China

Abstract

The design of a robust maneuver load alleviation (MLA) system for a high-performance aircraft is studied in this paper. First, the aeroservoelastic (ASE) models of a high-performance military aircraft in climbing maneuver at varying Mach numbers are established. Then, a linear parameter-varying (LPV) model of the ASE systems is constructed and an [Formula: see text] robust controller is designed based on the LPV model. The robust control is realized via a pair of outboard ailerons to alleviate the wing-root bending moments in the climbing maneuvers. To compensate the loss of performance in the load alleviation, a controller based on recurrent neural networks is designed in the flight control. Finally, some numerical simulations are made to testify the performance and robustness of the MLA system.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3